2,721 research outputs found

    Continuous flow processing as a tool for the generation of terpene-derived monomer libraries

    Get PDF
    We report the development of a continuous flow approach for the preparation of two bio-derived monomer libraries. A small range of terpenes (ocimene, myrcene, α-terpinene, α-phellandrene, isoprene, and farnesene) have been used as the base set for the library, with the first library derived from a Diels–Alder reaction with the platform chemical maleic anhydride. The second library requires the derivatization of the first through a hydrogenation reaction. The potential for scale-up of both libraries has been demonstrated, with the Diels–Alder process delivering 10.5 grams of the product in 3 hours and the hydrogenation process delivering 10 grams of the material in 16 hours

    Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context

    Get PDF
    The aryl hydrocarbon receptor (AhR) mediates the induction of a variety of xenobiotic metabolism genes. Activation of the AhR occurs through binding to a group of structurally diverse compounds, most notably dioxins, which are exogenous ligands. Isoflavones are part of a family which include some well characterised endogenous AhR ligands. This paper analysed a novel family of these compounds, based on the structure of 2-amino-isoflavone. Initially two luciferase-based cell models, mouse H1L6.1c2 and human HG2L6.1c3, were used to identify whether the compounds had AhR agonistic and/or antagonistic properties. This analysis showed that some of the compounds were weak agonists in mouse and antagonists in human. Further analysis of two of the compounds, Chr-13 and Chr-19, was conducted using quantitative real-time PCR in rat H4IIE and human MCF-7 cells. The results indicated that Chr-13 was an agonist in rat but an antagonist in human cells. Chr-19 was shown to be an agonist in rat but more interestingly, a partial agonist in human. Luciferase induction results not only revealed that subtle differences in the structure of the compound could produce species-specific differences in response but also dictated the ability of the compound to be an AhR agonist or antagonist. Substituted 2-amino-isoflavones represent a novel group of AhR ligands that must differentially interact with the AhR ligand binding domain to produce their species-specific agonist or antagonist activity and future ligand binding analysis and docking studies with these compounds may provide insights into the differential mechanisms of action of structurally similar compounds

    Topical Imiquimod Treatment of Lentigo Maligna

    Get PDF
    Lentigo maligna (LM) is the in situ phase of lentigo maligna melanoma, which may progress to invasive melanoma if left untreated. It mainly occurs on sun-exposed areas of elderly patients. The lesions can be large and conventional surgery can be difficult, particularly on the face. Recent reports indicate that topical imiquimod 5% cream is effective in the treatment of LM. It may be an alternative when surgery or other classical treatments are not possible in elderly patients. We describe an 80-year-old Caucasian woman with a 10-year history of a histologically verified extensive LM of the face. She was treated with imiquimod 5% cream once daily. After four months it showed complete clinical response. One year after the treatment the patient was still free from recurrence

    New combined CFH/MCP mutations and a rare clinical course in atypical haemolytic uraemic syndrome

    Get PDF
    Atypical haemolytic uraemic syndrome (aHUS) is a rare, life-threatening, chronic, genetic disease due to uncontrolled alternative pathway complement activation. In this report, we discuss the case of a heterozygous carrier of a mutation on both factor H and membrane cofactor protein, who persistently presents haemolytic anaemia without need for blood transfusions, normal platelet count, normal renal function and no signs or symptoms of organ injury due to thrombotic microangiopathy 4 years after the diagnosis of aHUS.info:eu-repo/semantics/publishedVersio

    Insights into the unique characteristics of hepatitis C virus genotype 3 revealed by development of a robust sub-genomic DBN3a replicon

    Get PDF
    Hepatitis C virus (HCV) is an important human pathogen causing 400 000 chronic liver disease-related deaths annually. Until recently, the majority of laboratory-based investigations into the biology of HCV have focused on the genotype 2 isolate, JFH-1, involving replicons and infectious cell culture systems. However, genotype 2 is one of eight major genotypes of HCV and there is great sequence variation among these genotypes (>30 % nucleotide divergence). In this regard, genotype 3 is the second most common genotype and accounts for 30 % of global HCV cases. Further, genotype 3 is associated with both high levels of inherent resistance to direct-acting antiviral (DAA) therapy, and a more rapid progression to chronic liver diseases. Neither of these two attributes are fully understood, thus robust genotype 3 culture systems to unravel viral replication are required. Here we describe the generation of robust genotype 3 sub-genomic replicons (SGRs) based on the adapted HCV NS3-NS5B replicase from the DBN3a cell culture infectious clone. Such infectious cell culture-adaptive mutations could potentially promote the development of robust SGRs for other HCV strains and genotypes. The novel genotype 3 SGRs have been used both transiently and to establish stable SGR-harbouring cell lines. We show that these resources can be used to investigate aspects of genotype 3 biology, including NS5A function and DAA resistance. They will be useful tools for these studies, circumventing the need to work under the biosafety level 3 (BSL3) containment required in many countries

    Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: A Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations

    Get PDF
    The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.This work was financed by FEDER-Fundo Europeu de Desenvolvimento Regional funds through COMPETE 2020-Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, by Portuguese funds through FCT-Fundação para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Biomedical anthropological study in Arabian Peninsula based on high-throughput genomics” (POCI-01-0145-FEDER-016609), the Italian Ministry of Education, University and Research project Dipartimenti di Eccellenza Program (2018–2022)—Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia (to A.T.). V.F. has a postdoc grant through FCT (SFRH/BPD/114927/2016). i3S is financed by FEDER-COMPETE 2020, Portugal 2020 and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Authors would like to thank Dr Francesco Bertolini for facilitating the research of A.R. in the last stage of the article preparation
    • …
    corecore